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ABSTRACT
Clinical experience sharing (CES) is a useful concept for
both medical treatment and medical education purposes.
One way of implementing CES is through the use of con-
tent based case retrieval (CBCR), where database of med-
ical cases is browsed for case instances that are similar to
the input query case. In this study, we introduce a new
project called case retrieval in radiology (CaReRa), which
aims at implementing CES for liver cases. We particularly
focus on 3D liver images acquired by computed tomogra-
phy (CT) and lay the foundations of a conceptual system
outputting a ranked list of results for a given query case,
formulated in this work as a liver lesion. A list of CT image
features serves as computer generated descriptors together
with user expressed annotations collected using a novel on-
tology of liver for radiology (ONLIRA). A two stage ap-
proach is proposed to utilize these two types of descriptors
in cascade, namely semantic framing and similarity ranking.
Initial retrieval performance results confirm the importance
of ontology based descriptors, while also highlights the foci
of future work needed to overcome the weaknesses.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval
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1. INTRODUCTION
Accurate diagnostic procedures play an important role in

medical field. Modern medical technologies have been offer-
ing some promising diagnostic techniques and machineries
for medical cases, enabling expert medical doctors (MDs) to
examine various aspects of the cases with higher diagnostic
accuracy.

The experience of the medical professionals drastically af-
fects the accuracy of the diagnoses, entertaining furthermore
an additional motivation for MDs to share their clinical ex-
periences and diagnostic routines. The concept of clinical
experience sharing (CES) can be proposed as a searchable
collective clinical experience platform, which enables practi-
cal, clinical, and educational knowledge sharing among large
community of medical professionals. CES can also be lever-
aged to prevent situations, where lack of medical experience
might have negative effects on diagnosis. In other words, by
employing a CES platform, MDs can search for some spe-
cific cases and therefore retrieve the similar past cases from
the collective database. This comparative procedure would
be very helpful to give better and more careful diagnostic
decisions. Moreover, such a platform can also be beneficial
for educational purposes, where medical students can search
for cases with similar characteristics but different diagnoses
or vice versa.

A CES platform can be implemented by means of a con-
tent based case retrieval (CBCR) engine, searching for sim-
ilar cases/patients in a database of past cases. Hence, there
must be means of representing cases and some definitions
for measuring similarity of different cases in the database.
A case is composed of a wide variety of multi-modal informa-
tion, such as patient demographics, medical history, lab test
results, physical examination, genetics, drugs used, radio-
logical images and image based observations/findings, etc.
A CBCR engine is composed of both a content-based image
retrieval (CBIR) engine employed in the visual (image) do-
main, and also a suite of similarity analysis tools in the non-
image domain. The CBIR component utilizes both the im-
age content and the other medical image metadata [1]. The
image content is represented with a comprehensive set of
computer generated features (CoG), while the image meta-
data is represented by user expressed features/annotations



(UsE) using a novel ontology (ONLIRA - Ontology of Liver
for Radiology) [7]. By combining the non-image metadata
as well as the knowledge models with CBIR, which focuses
on finding similar images based on pixel analysis and image
metadata, the retrieval system can be transformed from a
conventional image-based search to patient/case-based rea-
soning [6],[3],[13],[2]. In [1], namely a CBCR.

It is important to note that building an all-inclusive CES
system, which requires modelling the whole field of medicine,
is currently not feasible. In much the same way as MDs
themselves are specialized in discrete sub-domains of medicine
and generally consider a limited part of medical information.
Within the ongoing CaReRa (Case Retrieval In Radiology)
project, we have chosen the liver as the application domain,
mainly because of its importance and also relative ease of
data collection. Our primary goal in CaReRa is to rank
the liver cases in a liver case database according to their
similarity to a query case.

In this paper, we focus on the CBIR component of the
envisioned CBCR system, while discussing our approach to
achieve the final goal of developing a CBCR for liver cases.
More specifically, we propose the concept of Semantic Fram-
ing as an efficient way to combine the CoG features with UsE
features. This paper is organized as follows: Section 2 in-
troduces the CaReRa project. Section 2.1 reviews the CoG
features, namely the image descriptors. In Section 2.2, we
very briefly introduce ONLIRA and UsE features. Section 3
discusses the similarity analysis together with the Semantic
Framing. Experiments are presented in Section 4 and dis-
cussed in Section 5. Finally, Section 6 concludes the paper.

2. THE CARERA PROJECT
The CaReRa project (www.vavlab.ee.boun.edu.tr), which

aims at developing a CES space for liver cases, is the first
step towards a multi-center consortium for further research
and development over a broader range of medical domains.
CaReRa is expected to greatly influence the medical soci-
ety and attract major interest from the healthcare indus-
try. The project includes 3D CT image processing (segmen-
tation, characterization), image content analysis, ontology
formation specific to the diagnosis of liver diseases, ontology
guided query processing and case similarity/relevance anal-
ysis. Another important outcome of the project is the con-
struction of a database including different liver cases, which
are indeed annotated 3D CT images of liver augmented with
multi-modal meta-data about the patient.

The overall objective is to retrieve old liver cases similar
(or relevant with respect to the user’s hidden goals) to a
query case for the purposes of comparative diagnosis and
medical education via sharing the collective experience over
the medical community. Note that, in contrast to the more
familiar CBIR concept, the query is a single patient with
possibly missing information. These cases are described by
metadata at 4 levels organized in a hierarchy as patient,
study, series, and pathology. The patient-level includes de-
mographics and medical history while the study-level con-
tains the lab data and the clinical observations. The series-
level contains the CT parameters and the liver (including
the vessels) characteristics, while the pathology-level con-
tains the lesion characteristics. The series-level and the
pathology-level are represented with the CoG and the UsE
features, where the UsE features are annotations associated
with the novel ONLIRA ontology which is built upon the

Table 1: The global image descriptors
Organ Descriptor

Liver
Volume
Mean
Variance

Vessels Percentage of vessel volume

Set of Lesions/Pathologies

Percentage of lesions
Mean
Variance
Number of lesions
Min volume of lesions
Max volume of lesions

RadLex lexicon [11] with the extensions in attributes and
additions of ontological relations between these attributes.

In general, there are two key issues at the forefront of
the development of the CaReRa system. The first one is
representing the case and the second one is to define the
similarity between the cases. A liver case in CaReRa is rep-
resented with i) The computer generated image descriptors
(CoG), ii) The image based user annotations (UsE), iii) The
non-image based meta-data. These are explained in the fol-
lowing.

2.1 Computer Generated Image Descriptors
(CoG)

The image descriptors capitalize on the visual cues con-
tained in an image. In CaReRa, we consider image descrip-
tors into two main domains based on their scope of appli-
cation. The global image descriptors summarize the general
visual properties of the liver, vessels and set of lesions. The
pathology descriptors, on the other hand, reflect finer levels
of visual information related to individual lesions.

The global image descriptors, listed in Table 1, cover the
basic and liver-wide global statistical properties, such as
mean, variance and volume. They are deduced directly from
the CT volumes and the associated segmentation masks.

The pathology descriptors, listed in Table 2, are calculated
for each single lesion in the liver separately. The descriptors
marked with a × in Table 2 will be implemented in the
upcoming phases of the CaReRa project. They are grouped
in 5 types as geometric, locational, gray-scale, boundary and
texture:

Geometric Descriptors can be deduced directly from
the lesion mask and consist of shape-based cues such
as surface area, sphericity, convexity, compactness, so-
lidity, maximum-extent, and aspect-ratio.

Locational Descriptors refer to the location of the
lesion with respect to the vessels and liver. The first
feature, which is named proximity to vessels, indicates
the lesion’s distance to the nearest vessel. The touch
area ratio with the vessels is the percentage of lesion
surface area that touch a vessel. The liver segment
identifier (ID) defines the lesion’s location with respect
to liver segmentation part such as locating in the right
or the left lobe of liver.

Gray-scale Descriptors are derived directly from
raw pixel intensities. These features include mean and
variance of lesion tissue, asymmetry, kurtosis, por-
tion of voxels having intensity higher than a defined



Table 2: The pathology descriptors and their pa-
rameters

Type Name

Geometric

Name Cardinality Status
Volume 1 X
Surface area 1 X
Sphericity 1 X
Convexity 1 ×
Solidity 1 ×
Compactness 1 X
Maximum extent 1 X
Aspect ratio 1 X
Fourier descriptor 1 ×

Locational

Proximity to vessel 1 X
Touch area ratio 1 X
Anatomical location 1 ×

Boundary
Scale 30 X
Window 30 X

GrayScale

Name Cardinality Status
Mean 1 X
Variance 1 X
Thresholding 1 X
Histogram 64 X
Hist’s abscissa 1 X
Hist’s mean 1 X
Hist’s variance 1 X
Hist’s entropy 1 X
Smoothness 1 X
Assymmetry 1 X
kurtosis 1 X
Energy 1 X
Haar wavelet coeffs 8 X

Texture

Name Cardinality Status
Haralick 30 X
Tamura 5 hist X
Gabor 52 hist X
Hu moments 3 X

threshold value, and gray-level histogram of every le-
sion. We also derive histogram-based features, namely,
the bin of the histogram peak, the mean and the vari-
ance of histogram, the entropy of histogram, the low
frequency coefficients of histogram’s three level Haar
wavelet transform [16] and the energy of histogram
which is simply a measure of the uniformity of inten-
sity in the histogram.

Boundary Descriptors capture the contrast and sharp-
ness across the lesion boundaries as proposed in [19].
One dimensional gray-scale profiles are extracted along
the normal direction of the lesion surface for ±2 vox-
els . The intensity difference is the signed difference
between the two ends of this profile. The sharpness
refers to the rate of change of the CT values across the
boundary. These two parameters are calculated via
fitting a sigmoid function to the 1D boundary profile.
The boundary feature vector for each lesion is com-
posed of two 30 − bin histograms representing these
two parameters over the whole lesion surface.

Texture Descriptors are part of photometric fea-
tures and similar to gray-scale features, they are also

derived from image intensity values. They encode spa-
tial organization of pixel values of an image region and
are divided into two groups: statistical model-based
and transform-based. The statistical model-based tex-
ture features include Haralick’s features and Tamura
features. Six Haralick’s features are derived from co-
occurrence matrices in 5 distance and 13 directions
[4]. In this work, the features have been calculated
for distances of 1,2,4,6 and 8 in 13 degrees. For each
distance, the final feature value was computed by av-
eraging over the feature values corresponding to 13
angular directions. The Haralick features calculated
from the co-occurrence matrix are angular second mo-
ment, entropy, inverse difference moment, interia, clus-
ter prominence and cluster shade. Thus, a total of 30
texture characteristic was obtained, 6 characteristics
for each voxel distance. The Tamura features corre-
spond to human visual perception, which are coarse-
ness, contrast, directionality, line-likeness, regularity
and roughness. Generally, the first three features give
us better description of the texture object [8]. Coarse-
ness, which is the most fundamental texture feature,
finds the largest size at which a texture exists. Con-
trast of the image is influenced by dynamic range of
gray-levels in the image, polarization of the distribu-
tion of the black and white, sharpness of edges and
period of repeating patterns, which show the picture
quality [17]. Directionality calculates the direction of
the texture along three axes. Hence,there are five im-
age features including coarseness, contrast and 3 direc-
tionality images, which we store them as five feature
vectors. The transform based texture features invoke
standard transform domain analysis tools, the Gabor
filter and the invariant Hu moments. We used Gabor
filtering on the original CT image in 4 scales and 13
direction. As a result, 52 feature vectors are gener-
ated.[14]. The Invariant Hu moments are the set of
moments, which are invariant under translation, scale
and rotation [12]. We used the first three Hu moments
in 3D domain.

2.2 Image Based User Annotations (UsE)
Radiologists describe their observations of CT scans in

free-text radiology reports. Unfortunately, reports written
in natural language are not suitable for automatic process-
ing. Moreover, it becomes difficult to retrieve valuable in-
formation from reports because of their unstructured na-
ture. Hence, it is beneficial to represent the observations
in a structured manner. To represent imaging observations
of the liver domain, ONLIRA has been developed. An on-
tology is a conceptualization of a domain in a structured
way. It enables description of concepts and their proper-
ties as well as relationships between the concepts. ONLIRA
consists of 40 concepts, 12 relationships and 36 properties.
Currently, a data collection tool is using ONLIRA for the
collection of imaging observations of the liver. ONLIRA is
available for academic use at the CaReRa project website
(www.vavlab.ee.boun.edu.tr).

2.3 Non-Image Based Meta-Data
The non-image based meta-data is grouped as patient

(case) information and the study information. The data is
composed of both general quantitative and qualitative prop-



erties as well as the one that are used commonly in the di-
agnosis of liver diseases. The utilization of this information
is beyond the scope of this paper, hence a brief description
is provided below.

The patient (case) information is described in terms of
demographic information, regular use of drugs, chronic dis-
eases and past surgeries. Demographics information includes
age and sex of the patient. Description of the remaining
metadata information is enhanced with standardized termi-
nologies when possible. ATC codes 1 are used to specify
regular drugs used by the patient. Past, chronic and genetic
diseases are described using ICD-10 codes 2 . Surgery in-
formation for patients is provided using Turkish Ministry of
Health codes 3 . All of the meta-data associated with the
case is qualitative except for age.

The study information consists of both qualitative and
quantitative properties. They include the complaints, kept
as free text for future reference, the physical examination
such as blood pressure, pulse, signs of portal hypertension
and of liver dysfunction, the pre-diagnosis and diagnosis
information is detailed using the ICD-10 codes, the non-
regular drugs are specified by the use of ATC codes and
finally the numeric results of 26 blood tests.

3. SIMILARITY ANALYSIS
Within the scope of this paper, the similarity among the

liver lesions (pathologies) is considered. As described above,
the pathologies are represented using the CoG and the UsE
features. The CoG features are numeric features while the
UsE features are discrete labels referring to our novel ontol-
ogy (ONLIRA). Our similarity analysis approach is based on
using a cascaded system of UsE based pre-filtering, which is
termed as Semantic Framing, and CoG based ranking, which
uses the Euclidean distance in the real valued feature vector
space. Our primary goal in this study is to assess the fea-
sibility of semantic framing, which can potentially provide
an intuitive and flexible user interaction through semantic
query processing. Currently, the semantic framing is lim-
ited to using the controlled vocabulary defined in ONLIRA,
without any reference to the relations between the ONLIRA
concepts. Hence, we used ONLIRA as a lexicon which is an
extended version of Radlex for liver. No feature selection or
weighting is applied on the CoG features either.

3.1 Semantic Framing
We have used semantic framing to narrow the domain of

the query response using the method called formal concept
analysis (FCA). A formal concept is a pair consisting of a
set of objects and a set of attributes. FCA is a method used
to derive a concept hierarchy given a dataset consisting of
objects and their attributes [18]. The concept hierarchy can
be defined as a concept lattice [15].

We use FCA as a conceptual knowledge representation of
lesions. Basically, we have a set of lesions that consist of
several properties, and we would like to find similar lesions.
We define concepts by identifying lesions sharing the same
values for a certain set of properties. Then, we use a lattice
to represent the concept hierarchy of defined concepts. If a
query lesion is given, the corresponding concept is identified

1http://www.whocc.no/atc_ddd_index/
2http://www.who.int/classifications/icd/en/
3https://skrs3.sagliknet.saglik.gov.tr/

Figure 1: An example for lattice of lesions.

in the lattice. Then, the query lesion is compared with every
other lesion of the corresponding concept. If there are fewer
lesions than a present number K (= 10), then the lesion
query is expanded by selecting the upper neighbours of the
corresponding concept. In the envisioned user interaction,
K will not be fixed but rather the user will be allowed to
navigate within the search space freely.

In Figure 1, a concept hierarchy of five lesions is depicted
as a lattice. Rectangles represent formal concepts consisting
of lesions (Lx) and their properties (a subset of {a, b, c}). If
the query lesion is L2, then dashed concept is identified in
the lattice. In this case, there is only one lesion (L3) to
compare with. To get more results, the result set of lesions
are enlarged with L2’s upper level lesions where the final set
becomes {L1,L3,L5}. L2 is then compared to each lesion of
the final set.

3.2 Similarity Ranking
We used the Euclidean distance for similarity ranking.

Since all features, including both CoG and UsE features,
have different value ranges, all are scaled and shifted to the
range [0, 1]. While CoG features and some UsE features are
real valued in [0, 1], the remaining UsE features take dis-
crete values from {0, 1}. The histograms are normalized by
dividing every value in the histogram vector by sum of the
values in the histogram vector. The scaled feature vectors
are vCoG and vUsE . The computed distances are scaled with
the number of features in each set for normalization. Hence,
we get the following distance measures between cases i and
j,

dCoG(i, j) =
|vi

CoG − vj
CoG|2√

N
N = #(CoG) (1)

dUsE(i, j) =
|vi

UsE − vj
UsE |2√

M
M = #(UsE) (2)

We ranked the lesions preselected by semantic framing,
according to their similarity to the query lesion using dCoG.
For comparison, we ranked all lesions in the dataset, skip-
ping the semantic framing, using i) dall = 1

2
(dCoG + dUsE),

i.e. the mean distance, ii) dCoG only.



4. EXPERIMENTS

4.1 Dataset and Methodology
15 portal venous phase 3D CT images of the liver, from 15

patients (eight men, seven women; mean age,56 years; age
range, 39− 88 years), including 30 of three types (13 cysts,
7 hemangiomas, and 10 metastases) are used in our anal-
ysis [10]. The image acquisition parameters were 120kV p,
140− 400mAs, and 2.5− 5.0−mm section thickness. From
every type of lesions, lesions which are typically considered
by radiologists are selected.

The CoG features are extracted automatically using cus-
tom interactive segmentation software. The UsE features
are the ONLIRA based annotations provided by a board
certified radiologist (R.T.). The similarity ground truth is
the same as the one used in [10]. This ground truth was
generated by two experienced radiologists based on a single
2D slice view of each lesion. Similarities were graded on a
scale of 3 (3: Similar, 2: Somewhat similar, 1: Dissimilar).
The mean gradings of the two radiologists are used.

Leave-one-out method is used for performance evaluation.
Each of the 30 lesions is selected as a query and the re-
maining 29 lesion set is used as the search domain. The
normalized discounted cumulative gain (NDCG) [5] and the
well-known precision-recall (PR) [9] curves are computed for
each query. The individual NDCG and PR curves are aver-
aged to get the overall performance curves.

PR curves show the performance in retrieving the sim-
ilar lesions from the search domain. The binary ground
truth required for PR analysis is generated from the graded
ground truth by assigning 1 (=similar) to the lesion pairs
with graded ground truth larger than 1 and 0 (=dissimi-
lar) otherwise. Precision and recall, for k ∈ {1, 2, ..., 10}
retrieved lesions, are defined as,

Precision(k) =
#(similar images retrieved)

k
(3)

Recall(k) =
#(similar images retrieved)

#(similar images)
(4)

Note that, although both precision and recall range in [0, 1],
recall is upper bounded by K

#(similar images)
, where K = 10

in this study, hence maximum recall may not reach 1 for
some of the queries. Precision-recall curves have a distinc-
tive saw-tooth shape. In case the next lower ranked re-
trieved lesion is dissimilar to the query, while the current
one is similar, the precision would decrease while recall re-
mains the same. The standard way to cope with this issue
is using interpolated precision. The interpolated precision
at a certain recall level is defined as the highest precision
found for any recall level greater than or equal to the cur-
rent recall. The interpolated precision values are computed
for Recall = [0, 0.05, 0.1 . . . , 0.95, 1.0].

NDCG is a standard technique used to measure the ef-
fectiveness of information retrieval algorithms, when graded
truth is available, as represented by our three-point similar-
ity scale. NDCG(k) (k ∈ {1, 2, ..., 10}) indicates the simi-
larity value of the k retrieved lesions compared with their
similarities to the query lesion on the scale of 0 to 1. It is
done based on position of the retrieved lesions in the ranked
list. For a given k, higher NDCG(k) means more lesions sim-
ilar to the query image are ranked ahead of dissimilar ones.
Note that, NDCG(k) equal to 1 implying perfect retrieval
of k images. NDCG is defined as the ratio of discounted cu-

mulative gain (DCG) over ideal discounted cumulative gain
(IDCG) as follows,

NDCG(k) =
DCG(k)

IDCG(k)
(5)

DCG(k) = R1 +

k∑
i=2

Ri

log2i
(6)

IDCG(k) = max(DCG(k)) (7)

where Ri is the relevancy value in position i and k is the
number of retrieved images.

4.2 Results
Three sets of experiments were conducted with the leave-

one-out procedure:

* Experiment 1: A set of lesions is filtered using se-
mantic framing with respect to the query, such that
the minimum number of lesions (≥ 10) is selected. The
selected set of lesions is ranked using dCoG.

* Experiment 2: All lesions in the search domain are
ranked using dall = 1

2
(dCoG + dUsE) with respect to

the query, and the top ranking 10 lesions are used for
evaluation.

* Experiment 3: All lesions in the search domain are
ranked using dCoG only with respect to the query, and
the top ranking 10 lesions are used for evaluation.

Figure 2 shows the average NDCG and PR curves for all
experiments. Note that, since the total number of retrieved
lesions is bounded by K = 10 in all experiments (though
in Experiment 1 semantic framing preselects the minimum
number of lesions≥ 10), the recall values are upper bounded,
hence may not reach 1.0. We have pursued this approach to
make Experiments 2 and 3 comparable with Experiment 1
which uses semantic framing as a pre-filtering stage. In order
to present this effect, we also included, in Figures 2.b-d, the
number of queries that reached a given recall value together
with the total number of queries that can potentially reach
that recall value for K = 10 retrieved lesions.

Figure 3 shows the set of 10 retrieved lesions for a single
query, in each one of the three experiments.

5. DISCUSSION
The experimental results clearly indicate the potential of

using UsE features. The performance of using CoG and
UsE features together, even with a simple Euclidean distance
based similarity measure, has been observed to perform su-
perior to both using CoG features alone and CoG and UsE
features in a two stage scheme where the UsE features are
utilized for semantic framing, as depicted in Figure 2.

The differences in PR curves, in Figures 2.c and 2.d, as
well as the number of queries reaching a certain recall value
in comparison with the actual number of lesions that could
have reached that recall values for 10 retrieved lesions show
that UsE features are important in recalling the similar le-
sions. The lower PR performance in Experiment 1 suggests
that the current semantic framing fails to utilize the informa-
tion content of UsE features for recall. In addition to that,
a comparison of the NDCG plots in Figure 2.a indicates the
importance of UsE in ranking the retrieved lesions.
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Figure 2: A comparison of retrieval performance results in all experiments. (a) The average NDCG plots as
a function of the number of retrieved lesions, k ∈ {1, 2, ..., 10}. (b,c,d) The average PR curves, the number
of queries that reach the computed recall values and the true number of queries that reach the same recall
value. Only the top ranking 10 retrieved lesions are considered for Experiments 2 and 3.

On the other hand, the semantic framing provides a unique
tool for intuitive query processing to navigate in the search
space. It would facilitate search space scaling by means of
query expansion/contraction as well as panning by means of
manually editing the query’s UsE features to focus on differ-
ent subspaces of the search space. In a typical scenario where
the user’s intentions are unknown, such scaling and panning
functionalities would be very beneficial to steer the search-
ing towards the user’s goals. Furthermore, the prefiltering
by semantic framing would make more complex similarity
analysis/ranking, such as manifold learning approaches (eg.
Laplacian eigenmaps), feasible for large datasets. Currently,
our semantic framing methodology does not utilize the whole
information embedded in ONLIRA. Should the recall per-
formance of semantic framing be improved, would the per-
formance of the two stage scheme improve, remains to be
investigated. The relations between the concepts in ON-
LIRA can be used during semantic framing to this effect.

6. CONCLUDING REMARKS
In this proof-of-concept study, we have laid preliminary

foundations for CES and CBCR. We also have introduced
the CaReRa project, focusing on a particular way of im-
plementing CES for liver cases represented by 3D CT liver
images and the novel ONLIRA ontology. We also introduced
and employed a novel semantic framing method, which would
be operational in interactive search space navigation by means
of scaling and panning in a typical scenario where the users’
intentions are unknown. We believe that such a naviga-
tion tool can help to overcome the drawbacks of classifier
based approaches as they are optimized for predefined con-
texts, represented by the gold standards used, with respect
to which the aforementioned classifiers are trained. How-
ever, despite these current results confirm the importance of
ontology based features, the current simple semantic fram-
ing implementation failed to utilize this potential.
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Figure 3: The retrieved lesions for a single query, in each of the three experiments, ordered row-wise according
to the ranking results.The numbers on each retrieved lesion image is the ground truth grades (3: Similar, 2:
Somewhat similar, 1: Dissimilar)

The objective of CaReRa is to perform case retrieval which
requires the utilization of non-image metadata as well. Fu-
ture work includes improving the semantic framing method-
ology by incorporating the ONLIRA ontology in full (cur-
rently, only its terms are used without any inter-relations),
investigating context learning similarity ranking approaches
to address the needs in typical scenarios where the users’ in-
tentions are unknown, expanding the metadata by including
the non-image domain information to perform case retrieval
within the CBCR concept.
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eRa Project (TÜBİTAK Project No: 110E264) and Bogazici
University B.A.P (Project No: 5324).

8. REFERENCES
[1] C. B. Akgül, D. L. Rubin, S. Napel, C. F. Beaulieu,

H. Greenspan, and B. Acar. Content-based image
retrieval in radiology: current status and future
directions. J. Digit. Imaging, 24(2):208–222, 2011.

[2] T. M. Deserno, P. Welter, and A. Horsch. Towards a
repository for standardized medical image and signal
case data annotated with ground truth. J. digit.
imaging, 25(2):213–226, 2012.

[3] B. Fischer, P. Welter, R. W. Günther, and T. M.
Deserno. Web-based bone age assessment by
content-based image retrieval for case-based reasoning.
Int. J. comp. assist. radio. and surgery, 7(3):389–399,
2012.

[4] M. Gletsos, S. G. Mougiakakou, G. K. Matsopoulos,
K. S. Nikita, A. S. Nikita, and D. Kelekis. A
computer-aided diagnostic system to characterize ct



focal liver lesions: design and optimization of a neural
network classifier. IEEE Trans. Inf. Techno. Biomed.,
7(3):153–162, 2003.

[5] K. Järvelin and J. Kekäläinen. Cumulated gain-based
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