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Abstract. Diffusion tensor magnetic resonance imaging (DT-MRI)
based fiber tractography aims at reconstruction of the fiber network of
brain. Most commonly employed techniques for fiber tractography are
based on the numerical integration of the principal diffusion directions.
Although these approaches generate intuitive and easy to interpret re-
sults, they are prone to cumulative errors and mostly discard the stochas-
tic nature of DT-MRI data. The proposed Split & Merge Tractography
(SMT) technique aims at overcoming the drawbacks of fiber tractog-
raphy by incorporating it with Markov Chain Monte Carlo techniques.
SMT is based on clustering diversely distributed short fiber tracts based
on their inter-connectivity. SMT also provides real-time interaction to
adjust a user defined confidence level for clustering.

1 Introduction

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is the unique modal-
ity that allows in-vivo imaging of the nervous network in brain. The data is a
symmetric, positive semi-definite second-order tensor field that is a second order
approximation of the physical diffusion process locally. The principal eigenvec-
tors of the tensors are shown to be aligned with the underlying fibers in regions of
anisotropic diffusion. However, the DT-MRI data is derived from a set of Diffu-
sion Weighted Magnetic Resonance Imaging (DWT) data. DWI data is acquired
using diffusion weighting gradient magnetic fields, G, in addition to the constant
field, By. G causes the MR signal to attenuate due to the diffusion along this
magnetic field gradient [112,[3].

It is of utmost importance to understand what the DT-MRI data represents
in order to develop adequate analysis and visualization methods. DT-MRI rep-
resents a macro view of the diffusion process within a finite voxel volume as
observed by DWI. Neither the accuracy of the second order approximation, nor
its spatial resolution is adequate to represent individual fibers.

A novel approach to increase the accuracy of this approximation by using
higher order tensors was proposed by Liu et al. [4]. The so called Generalized
Diffusion Tensor Imaging (GDTI) has not been put in practice and will not be
discussed here. The two major approaches to DT-MRI analysis and visualization
are Fiber Tractography and Connectivity Mapping. The former approach solely
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relies on the numerical integration of the principal diffusion direction (PDD,
the major eigenvector of the diffusion tensor) and attempts to reconstruct the
fiber that passes through a given point [B]. The most popular method is the 4th
order Runge-Kutta [6]. These approaches are prone to cumulative errors and
most of them oversee the stochastic nature of the underlying data [7.[8]. The
latter approach attempts to utilize the true nature of the DT-MRI data, i.e.
the second order approximation of the physical diffusion process, by estimating
a connectivity map. They consider each and every possible connection between
neighbouring voxels with weights set by the dataset. Several approaches in this
group are based on Monte-Carlo simulations of the random walk model [9,10,
11]. Lenglet et al., on the other hand, recasted the connectivity problem to
the Riemannian differential geometry framework where they defined their local
metric tensor using the DTI data and solved for geodesics [12].

The most important point that differentiates these two approaches is their
response at problematic regions such as crossing, kissing and branching fibers.
The tractography methods either pretend to follow a single fiber by choosing
a direction to proceed at such points or stop tracking. These methods do not
allow for a user interface to set a confidence level despite the nature of the
data. The connectivity mapping methods, on the other hand, lets the results
be interpreted with respect to some confidence definition. They also allow for
branching. Although single fibers do not branch, fiber bundles do and this makes
branching while tracking a necessity due to the low spatial resolution of DT-MRI
data. Thus, the connectivity mapping is a more direct way of communicating the
stochastic and structural information embedded in the data than conventional
fiber tractography. Yet the computational cost of connectivity mapping is high
and their interpretation is not straight forward.

The Split & Merge Tractography (SMT) method proposes a compromise be-
tween tractography, which greatly disregards the stochastic nature of the data
and accumulates error, and connectivity mapping, which is computationally
costly and hard to interpret. SMT is based on clustering short fiber tracts using
a Monte Carlo Markov Chain (MCMC) approach. Using short tracts prevents
error accumulation, while the MCMC provides a stochastic framework in which
we can define a confidence level for the clusters, allowing the user to investigate
the data in detail.

2 Method

Split & Merge Tractography (SMT) [13,[I4] is a MCMC technique that is used
to estimate the unknown distribution of fiber tracts. However, unlike previously
proposed methods that exploit the stochastic nature of DT-MRI data for fiber
tractography [I516], the output of SMT is not the full tracts but rather clus-
ters of short tracts. The underlying rationale behind this is to avoid the error
accumulation.

The short tracts are computed by the numerical integration of the PDD field
using the 4th order Runge-Kutta method [6]. SMT avoids such error accumulation
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Fig.1. A bridge is built from the current short tract S; (initially a seed tract) to Sj,
which is selected based on the Gaussian PDF described by Dgl)

in PDD tracking by using short tracts. PDD tracking is started from each voxel
unless that voxel is on a previously computed short tract. The maximum length
of the short tracts is set to 2.8mm, the tracking is terminated when the Fractional
Anisotropy is below 0.25 or the curvature exceeds 20° per step. This is the splitting
step where the whole brain is populated by short tracts.

The merging step is composed of estimating a co-occurrence matrix, M, for
this abundant set of short tracts. A single element of M, namely M;;, represents
the probability of having the short tracts S; and S; in the same cluster. The
MCMC techniques get into play at this stage of SMT.

Let S; be a short tract. Let I be a cluster of short tracts that includes S;, i.e.
a set of short tracts that are on the same fiber. Then, SMT aims at estimating

Mj; = P(S; € IG]S; € I3) , Mij = My; ,i,j=1,---,N (1)

where N is the total number of short tracts that populates the complete brain.

Let Si(k);i =1,---,N;k = 1,2 represent the k" endpoint of S;, without any
specific ordering of endpoints. For a short tract .S;, a bridge is built between
Si(l) and the S](-k) with the highest probability of being connected to Si(l). If we
(k)

denote the position of Si(k) with 7, and the diffusion tensor at that position

with ng), then the probability of bridging 1"1(1) and r](-k) can be approximated by
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This is the Gaussian distribution as represented by Dgl). Without loss of gener-
ality, let all bridges originate from the first end-point (kK = 1) and terminate in
the second end point (k = 2). We repeat the whole process starting from 7“](-1),
until no bridge with high enough (an arbitrarily small threshold, €) probability
can be built. The whole process is repeated starting from the second end-point
of S;, namely SZ-(Q) (backward clustering). Finally, we get the initial cluster for a

given S;. Figure [l depicts bridging from 5; to 5.
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This initial cluster is a sample from the distribution of all clusters that include
S;. Let us denote this cluster by I'Y. We then increment M;; and Mj; by one
for all j such that S; € I'Y. The whole process is iterated K times, generating
{I?,.., T, iK ~11. Consecutive iterations are performed by breaking the weakest
bridge, building a new one at that location and completing the rest of clustering
as explained above. Our goal is to estimate the distribution of such clusters,
equivalently, to approximate the probability distribution function (PDF) of the
connectivity of S; to all other short tracts. Connectivity between S; and .S; is
proportional to the probability of the existence of a cluster that includes them
both. An approximation to this PDF is the histogram as represented by Mj;;, j =
{1,...,N}. We used the Metropolis-Hastings algorithm (MHA) to populate the
aforementioned histogram [I7].

The principal components of MHA are i) a sampling strategy, ) a sample
fitness function, f(.), #i) a candidate generating density, ¢(.,.), which is the

probability of generating a new sample from a given sample. Let Fl-(m) denote
the m'" sample selected from all clusters that include S;. The corresponding
SMT components are as follows:

1. Sampling Strategy: Given a cluster of short tracts, Ti(m), the weakest bridge

is identified. The strength of a bridge between rz(jl) and r<(12) is represented

by the Fractional Anisotropy (FA) of Dz(jl) because the reliability of PDD
tracking decreases with FA. Let us denote the FA at Dz(,l) with Fzgl). Remov-

ing the weakest bridge, the section of I i(m) that includes S;, is retained. A
new bridge between 1"1(71) and one of its neighbours is built at random and a
new cluster is formed beyond the new bridge. Let the new bridge be built

between TI(,l) and r(w2 ).

2. Sample (Short Tract Cluster) Fitness: The fitness of a sample F-(m), ie.

K3
f(r i(m)) is chosen to be the minimum of the strengths of its bridges because
a cluster’s reliability is dominated by its weakest bridge.
3. Candidate Generating Density: Probability of generating a new sample can-
didate cluster from a given one is formulated as the product of the probability
of removing the weakest bridge and building a new one. It is given as,

m m 1 F(l) —w
o(I™ om0y _ /Fp y p
i i Z 1/F(1) Z Cpss
jeA /1 E z€B P
—_———— —N

Prob. of building a bridge
3)

where Fzgl) is the fitness of the removed bridge, c,_.,, is the probability of the

Prob. of removing a bridge

newly built bridge originating from Tz(,l), A is the set of short tract indices

that belong to Fi(m) and B is the set of short tract indices that are in the

neighbourhood of rfgl) .
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For a given seed tract 5;, the MHA is iterated. The newly generated sample
at each iteration is accepted with a probability given as,

(m~+1) (m) p(m+1)
a(Fi(m)vpi(m+1)) — min 17 f(Fz o )q([(‘z +1)I‘z o) ))
S, ™)

3

(4)

If Fi(mﬂ) is accepted, then we increment M;,, My; VS, € Fi(m+1), otherwise,
we increment M;,, M,; VS, € Fi(m) by one. The number is iterations, K, is
empirically determined to be 100. The whole process repeated to build M by
taking each short tract as the seed tract.

The co-occurrence matrix M is computed and saved off-line. It represents the
whole brain connectivity. The user is required to select a volume of interest to
mark a set of seed tracts and a confidence threshold, 7. For each seed tract S; in
the volume interest, all S;’s with M;; > 7 x K are selected and displayed. The
interface is similar to the dynamic queries interface proposed in [I§].

3 Results

We used real patient DT-MRI data for the initial validation of the SMT method.
The scans were single-shot EPI scans with diffusion encoding along 12 non-
collinear directions plus one reference without diffusion-weighting. The FOV
was 25-26cm, TE was minimum with partial k-space acquisition. TR was ~ 10s
and b-value was ~ 850s/mm?.

Seed tracts are selected with a spherical volume of interest (VOI) on the left
side of the corpus callosum / optic radiation of a healthy individual, as marked
with circles in Figures Bla and 2. Seed volumes are identical for both images.
The confidence threshold, 7, for Figures[2l a and b are 0.0 and 0.1, respectively.
Note the decrease of the number of short tracts with increasing confidence.

A second set of seed tracts are selected with a spherical VOI at the inferior part
of the cortico-spinal tracts of the same healthy individual as shown in Figures
Rlc and 2ld. The VOI covers both the left and the right sides. The cortico-spinal
tracts are known to spread as they extend to the superior regions. The confidence
threshold, 7, for Figures Blc and 2ld are 0.0 and 0.3, respectively. In addition to
the effect of 7, we can also observe the branching that SMT allows.

The final set of seed tracts are selected with a spherical VOI in the infe-
rior longitudinal fasciculus region, close to the uncinate fasciculus, as marked
with circles in Figures 2e and 2Jf. The confidence threshold, 7, is 0.0 and 0.6,
respectively.

Computation of the short tracts (13540 short tracts for the current dataset)
throughout the brain and the co-occurrence matrix M takes approximately 3
hours on PC with Pentium 4 (2.4GHz) and 1.5GB RAM. This computation is
performed once for each dataset in batch mode and M is saved. Visualization
and analysis of the data based on the computed M is a real-time application.
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Fig. 2. Three sets of seed tracts, one for each row, in different regions of the brain of
a healthy human are selected and the corresponding short tract clusters with different
confidence levels (low for the left images, high for the right images) are displayed
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4 Discussion

The SMT method combines the intuitive interpretation of conventional fiber
tractography with the stochastic approach of connectivity analysis using a
Markov Chain Monte Carlo (MCMC) framework. It is based on estimating the
PDF of the cluster of short tracts connected to a given a seed tract using the
Metropolis-Hastings algorithm [I7].

The advantage of using short tracts is the intuitive user interface that it pro-
vides and the negligible tracking error accumulation. SMT displays all short
tracts connected to a given seed tract with a probability higher than the user
set confidence threshold. The interpolation of the complete tracts is left to the
human visual system. The efficiency of this interpolation increases with the in-
creasing density of short tracts. This approach provides a direct way to present
the information content of DT-MRI data by explicitly displaying the possibilities
at problematic regions, such as kissing and crossing fibers.

The MCMC framework, on the other hand, exploits the stochastic nature of
DT-MRI data. The data is based on the second order approximation of the total
diffusion of water molecules within a finite subvolume (the voxel) in a given direc-
tion (as determined by the diffusion weighting gradient fields), observed through
an attenuation in MR signal received. In other words, the computed diffusion ten-
sors represent the probabilistic spatial distribution of diffusing molecules in a given
voxel within a given time period. Consequently, it is more accurate to consider
this distribution, as done in connectivity analysis, than to consider the principal
diffusion direction only, as mostly done in conventional fiber tractography. The
Metropolis-Hastings algorithm utilizes this information in estimating the clusters
of short tracts. It, thus, allows for branching, merging and crossing pathways.

Although the computational cost of computing the co-occurrence matrix (M)
is high, it is performed once for each dataset, in batch mode and independent
of any VOI. A single M matrix describes the connectivity throughout the brain.
We have used 100 iterations of the Metropolis-Hastings algorithm. Increasing
the number of iterations would increase the accuracy, yet we have not observed
significant differences in the results when the number of iterations is increased
beyond 100. The examination of DT-MRI data is based on dynamic queries that
define VOIs and is real-time [18].

The SMT method proposes a framework based on clustering short fiber tracts
with Markov Chain Monte Carlo techniques, specifically with the Metropolis-
Hastings Algorithm. We have presented the underlying model and preliminary
results. Neither the proposed sampling strategy nor the sample fitness or the candi-
date generating density is claimed to be the optimum choices. Different tractogra-
phy methods can be developed within the SMT framework simply by using different
models for these components. Research on variations of SMT, its performance with
high b-value data and a thorough clinical evaluation is left as future work.
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